Three Dimensional Viscous Finite Element Formulation For Acoustic Fluid Structure Interaction.
نویسندگان
چکیده
A three dimensional viscous finite element model is presented in this paper for the analysis of the acoustic fluid structure interaction systems including, but not limited to, the cochlear-based transducers. The model consists of a three dimensional viscous acoustic fluid medium interacting with a two dimensional flat structure domain. The fluid field is governed by the linearized Navier-Stokes equation with the fluid displacements and the pressure chosen as independent variables. The mixed displacement/pressure based formulation is used in the fluid field in order to alleviate the locking in the nearly incompressible fluid. The structure is modeled as a Mindlin plate with or without residual stress. The Hinton-Huang's 9-noded Lagrangian plate element is chosen in order to be compatible with 27/4 u/p fluid elements. The results from the full 3d FEM model are in good agreement with experimental results and other FEM results including Beltman's thin film viscoacoustic element [2] and two and half dimensional inviscid elements [21]. Although it is computationally expensive, it provides a benchmark solution for other numerical models or approximations to compare to besides experiments and it is capable of modeling any irregular geometries and material properties while other numerical models may not be applicable.
منابع مشابه
Concepts and Application of Three Dimensional Infinite Elements to Soil Structure-Interaction Problems
This study is concerned with the formulation of three dimensional mapped infinite elements with 1/r and 1/ decay types. These infinite elements are coupled with conventional finite elements and their application to some problems of soil structure interaction are discussed. The effeciency of the coupled finite-infinite elements formulation with respect to computational effort, data preparation a...
متن کاملA Mixed Displacement-based Finite Element Formulation for Acoustic Fluid-structure Interaction
The solutions of fluid-structure interaction problems, using displacement-based finite element formulations for acoustic fluids, may contain spurious non-zero frequencies. To remove this deficiency, we present here a new formulation based on a three-field discretization using displacements, pressure and a “vorticity moment” as variables with an appropriate treatment of the boundary conditions. ...
متن کاملCoupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure
The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملA Fem/multigrid Solver for Monolithic Ale Formulation of Fluid-structure Interaction Problem
In this contribution we investigate a monolithic algorithm to solve the problem of time dependent interaction between an incompressible, possibly nonnewtonian, viscous fluid and an elastic solid. The continuous formulation of the problem and its discretization is done in a monolithic way, treating the problem as one continuum and discretized by the Q2/P1 finite elements. The resulting set of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods in applied mechanics and engineering
دوره 197 49-50 شماره
صفحات -
تاریخ انتشار 2008